你好!歡迎光臨北京中儀友信科技有限公司!已注冊[登錄] 新用戶[免費注冊]
免費銷售電話
就是要儀器網(wǎng)>>技術(shù)文章>>水質(zhì)檢測行業(yè) >> 土壤農(nóng)林檢測設備 >> 葉綠素熒光測定儀 >> 葉綠素熒光測定儀的原理
葉綠素熒光測定儀的原理
[ 2013/10/16 19:39:43 ] [轉(zhuǎn)載請注明來源:就是要儀器網(wǎng)]

工作原理


1983年,WALZ公司首席科學家,德國烏茲堡大學教授Ulrich Schreiber博士利用調(diào)制技術(shù)和飽和脈沖技術(shù),設計制造了全世界第一臺脈沖振幅調(diào)制(Pulse-Amplitude-Modulation,PAM)熒光儀——PAM-101/102/103。


所謂調(diào)制技術(shù),就是說用于激發(fā)熒光的測量光具有一定的調(diào)制(開/關)頻率,檢測器只記錄與測量光同頻的熒光,因此調(diào)制熒光儀允許測量所有生理狀態(tài)下的熒光,包括背景光很強時。正是由于調(diào)制技術(shù)的出現(xiàn),才使得葉綠素熒光由傳統(tǒng)的“黑匣子”(避免環(huán)境光)測量走向了野外環(huán)境光下測量,由生理學走向了生態(tài)學。

經(jīng)過充分暗適應后,所有電子門均處于開放態(tài),打開測量光得到Fo,此時給出一個飽和脈沖,所有的電子門就都將該用于光合作用的能量轉(zhuǎn)化為了熒光和熱,此時得到的葉綠素熒光為Fm。根據(jù)Fm和Fo可以計算出PS II的最大量子產(chǎn)量Fv/Fm=(Fm-Fo)/Fm,它反映了植物的潛在最大光合能力。

所謂飽和脈沖技術(shù),就是打開一個持續(xù)時間很短(一般小于1 s)的強光關閉所有的電子門(光合作用被暫時抑制),從而使葉綠素熒光達到最大。飽和脈沖(Saturation Pulse, SP)可被看作是光化光的一個特例。光化光越強,PS II釋放的電子越多,PQ處累積的電子越多,也就是說關閉態(tài)的電子門越多,F(xiàn)越高。當光化光達到使所有的電子門都關閉(不能進行光合作用)的強度時,就稱之為飽和脈沖。

打開飽和脈沖時,本來處于開放態(tài)的電子門將該用于光合作用的能量轉(zhuǎn)化為了葉綠素熒光和熱,F(xiàn)達到最大值。

在光照下光合作用進行時,只有部分電子門處于開放態(tài)。如果給出一個飽和脈沖,本來處于開放態(tài)的電子門將該用于光合作用的能量轉(zhuǎn)化為了葉綠素熒光和熱,此時得到的葉綠素熒光為Fm’。根據(jù)Fm’和F可以求出在當前的光照狀態(tài)下PS II的實際量子產(chǎn)量Yield=ΦPSII=ΔF/Fm’=(Fm’-F)/Fm’,它反映了植物目前的實際光合效率。

光照狀態(tài)下打開飽和脈沖時,電子門被完全關閉,光合作用被暫時抑制,也就是說光化學淬滅被全部抑制,但此時熒光值還是比Fm低,也就是說還存在熒光淬滅,這些剩余的熒光淬滅即為非光化學淬滅。淬滅系數(shù)的計算公式為:qP=(Fm’-Fs)/Fv’=1-(Fs-Fo’)/(Fm’-Fo’);qN=(Fv-Fv’)/Fv=1-(Fm’-Fo’)/(Fm-Fo);NPQ=(Fm-Fm’)/Fm’=Fm/Fm’-1。

在光照下光合作用進行時,只有部分電子門處于關閉態(tài),實時熒光F比Fm要低,也就是說發(fā)生了熒光淬滅(quenching)。植物吸收的光能只有3條去路:光合作用、葉綠素熒光和熱。根據(jù)能量守恒:1=光合作用+葉綠素熒光+熱??梢缘贸觯喝~綠素熒光=1-光合作用-熱。也就是說,葉綠素熒光產(chǎn)量的下降(淬滅)有可能是由光合作用的增加或熱耗散的增加引起的。由光合作用的引起的熒光淬滅稱之為光化學淬滅(photochemical quenching, qP);由熱耗散引起的熒光淬滅稱之為非光化學淬滅(non-photochemical quenching, qN或NPQ)。光化學淬滅反映了植物光合活性的高低;非光化學淬滅反映了植物耗散過剩光能為熱的能力,也就是光保護能力。

根據(jù)PS II的實際量子產(chǎn)量ΔF/Fm’和光合有效輻射(Photosynthetically Active Radiation, PAR)還可計算出光合電子傳遞的相對速率rETR=ΔF/Fm’·PAR·0.84·0.5。其中0.84是植物的經(jīng)驗性吸光系數(shù),0.5是假設植物吸收的光能被兩個光系統(tǒng)均分。

當F達到穩(wěn)態(tài)后關閉光化光,同時打開遠紅光(Far-red Light, FL)(約持續(xù)3-5 s),促進PS I迅速吸收累積在電子門處的電子,使電子門在很短的時間內(nèi)回到開放態(tài),F(xiàn)回到最小熒光Fo附近,此時得到的熒光為Fo’。由于在野外測量Fo’不方便,因此野外版的調(diào)制熒光儀(除PAM-2100和WATER-PAM)外,多數(shù)不配置遠紅光。此時可以直接利用Fo代替Fo’來計算qP和qN,盡管得到的參數(shù)值有輕微差異,但qP和qN的變化趨勢與利用Fo’計算時是一致的。由于NPQ的計算不需Fo’,近10幾年來得到了越來越廣泛的應用。

2常用型號

葉綠素 - 分類

葉綠素分為葉綠素a、葉綠素b、葉綠素c、葉綠素d、原葉綠素和細菌葉綠素等。

葉綠素名稱存在場所最大吸收光帶

葉綠素a所有綠色植物中紅光和藍紫光

葉綠素b高等植物、綠藻、眼蟲藻、管藻紅光和藍紫光

葉綠素c硅藻、甲藻、褐藻紅光和藍紫光

葉綠素d紅藻紅光和藍紫光

原葉綠素黃化植物(幼苗期)近于紅光和藍紫光

細菌葉綠素紫色細菌紅光和藍紫光

葉綠素 - 化學結(jié)構(gòu)


葉綠素分子結(jié)構(gòu)

19世紀初,俄國化學家、色層分析法創(chuàng)始人M.C.茨韋特用吸附色層分析法證明高等植物葉子中的葉綠素有兩種成分。德國H.菲舍爾等經(jīng)過多年的努力,弄清了葉綠素的復雜的化學結(jié)構(gòu)。1960年美國R.B.伍德沃德領導的實驗室合成了葉綠素a。至此,葉綠素的分子結(jié)構(gòu)得到定論。


葉綠素分子是由兩部分組成的:核心部分是一個卟啉環(huán)(porphyrin ring),其功能是光吸收;另一部分是一個很長的脂肪烴側(cè)鏈,稱為葉綠醇(phytol),葉綠素用這種側(cè)鏈插入到類囊體膜。與含鐵的血紅素基團不同的是,葉綠素卟啉環(huán)中含有一個鎂原子。葉綠素分子通過卟啉環(huán)中單鍵和雙鍵的改變來吸收可見光。各種葉綠素之間的結(jié)構(gòu)差別很小。如葉綠素a和b僅在吡咯環(huán)Ⅱ上的附加基團上有差異:前者是甲基,后者是甲醛基。細菌葉綠素和葉綠素a不同處也只在于卟啉環(huán)Ⅰ上的乙烯基換成酮基和環(huán)Ⅱ上的一對雙鍵被氫化。

葉綠素 - 化學性質(zhì)

高等植物葉綠體中的葉綠素主要有葉綠素a 和葉綠素b 兩種。它們不溶于水,而溶于有機溶劑,如乙醇、丙酮、乙醚、氯仿等。葉綠素a分子式:C55H72O5N4Mg;葉綠素b分子式:C55H70O6N4Mg。在顏色上,葉綠素a 呈藍綠色,而葉綠素b 呈黃綠色。按化學性質(zhì)來說,葉綠素是葉綠酸的酯,能發(fā)生皂化反應。葉綠酸是雙羧酸,其中一個羧基被甲醇所酯化,另一個被葉醇所酯化。


葉綠素分子含有一個卟啉環(huán)的“頭部”和一個葉綠醇的“尾巴”。鎂原子居于卟啉環(huán)的中央,偏向于帶正電荷,與其相聯(lián)的氮原子則偏向于帶負電荷,因而卟啉具有極性,是親水的,可以與蛋白質(zhì)結(jié)合。葉醇是由四個異戊二烯單位組成的雙萜,是一個親脂的脂肪鏈,它決定了葉綠素的脂溶性。葉綠素不參與氫的傳遞或氫的氧化還原,而僅以電子傳遞(即電子得失引起的氧化還原)及共軛傳遞(直接能量傳遞)的方式參與能量的傳遞。


卟啉環(huán)中的鎂原子可被氫離子、銅離子、鋅離子所置換。用酸處理葉片,氫離子易進入葉綠體,置換鎂原子形成去鎂葉綠素,使葉片呈褐色。去鎂葉綠素易再與銅離子結(jié)合,形成銅代葉綠素,顏色比原來更穩(wěn)定。人們常根據(jù)這一原理用醋酸銅處理來保存綠色植物標本。 葉綠醇是親脂的脂肪族鏈,由于它的存在而決定了葉綠素分子的脂溶性,使之溶于丙酮、酒精、乙醚等有機溶劑中。由于在結(jié)構(gòu)上的差別,葉綠素a呈藍綠色,b呈黃綠色。在光下易被氧化而退色。葉綠素是雙羧酸的酯,與堿發(fā)生皂化反應。


葉綠素不很穩(wěn)定,光、酸、堿、氧、氧化劑等都會使其分解。酸性條件下,葉綠素分子很容易失去卟啉環(huán)中的鎂成為去鎂葉綠素。葉綠素溶液能進行部分類似光合作用的反應,在光下使某些化合物氧化或還原。人工制備的葉綠素膜在光下能產(chǎn)生光電位和光電流,也能催化某些氧化還原反應。

葉綠素 - 光和作用


光和作用

光合作用是指綠色植物通過葉綠體,利用光能,把二氧化碳和水轉(zhuǎn)化成儲存著能量的有機物,并且釋放出氧的過程。光合作用的第一步是光能被葉綠素吸收并將葉綠素離子化。產(chǎn)生的化學能被暫時儲存在三磷酸腺苷(ATP)中,并最終將二氧化碳和水轉(zhuǎn)化為碳水化合物和氧氣。


1864年,德國科學家薩克斯做了這樣一個實驗:把綠色葉片放在暗處幾小時,目的是讓葉片中的營養(yǎng)物質(zhì)消耗掉。然后把這個葉片一半曝光,另一半遮光。過一段時間后,用碘蒸氣處理葉片,發(fā)現(xiàn)遮光的那一半葉片沒有發(fā)生顏色變化,曝光的那一半葉片則呈深藍色。這一實驗成功地證明了綠色葉片在光合作用中產(chǎn)生了淀粉。


1880年,德國科學家恩吉爾曼用水綿進行了光合作用的實驗:把載有水綿和好氧細菌的臨時裝片放在沒有空氣并且是黑暗的環(huán)境里,然后用極細的光束照射水綿。通過顯微鏡觀察發(fā)現(xiàn),好氧細菌只集中在葉綠體被光束照射到的部位附近;如果上述臨時裝片完全暴露在光下,好氧細菌則集中在葉綠體所有受光部位的周圍。恩吉爾曼的實驗證明:氧是由葉綠體釋放出來的,葉綠體是綠色植物進行光合作用的場所?!?/p>


將一片脫去淀粉的紫羅蘭葉片放在陽光下數(shù)小時之后用碘試劑檢測,可以發(fā)現(xiàn)只有葉片上綠色的區(qū)域變色而白色區(qū)域沒有,也就是說只有綠色區(qū)域有淀粉存在。這顯示了光合作用在缺乏葉綠素的情況下無法進行,葉綠素存在是光合作用的必要條件。

葉綠素 - 熒光現(xiàn)象和磷光現(xiàn)象


葉綠素熒光儀

葉綠素的可見光波段的吸收光譜,在藍光和紅光處各有一顯著的吸收峰。吸收峰的位置和消光值的大小隨葉綠素種類不同而有所不同。葉綠素a最大的吸收光的波長在420-663nm,葉綠素b 的最大吸收波長范圍在460-645nm。當葉綠素分子位于葉綠體膜上時,由于葉綠素與膜蛋白的相互作用,會使光吸收的特性稍有改變。


葉綠素的酒精溶液在透射光下為翠綠色,而在反射光下為棕紅色。這個紅光就是葉綠素受光激發(fā)后發(fā)射的熒光。這個現(xiàn)象就是熒光現(xiàn)象。其主要原理是由于葉綠素有兩個不同的吸收峰。葉綠素吸收光的能力極強,如果把葉綠素的丙酮提取液放在光源與分光鏡之間,可以看到光譜中有些波長的光被吸收了。因此,在光譜上就出現(xiàn)了黑線或暗帶,這種光譜叫吸收光譜。葉綠素吸收光譜的最強區(qū)域有兩個:一個是在波長為640nm-660nm的紅光部分,另一個在波長為430nm-450nm的藍紫光部分。對其他光吸收較少,其中對綠光吸收最少,由于葉綠素吸收綠光最少,所以葉綠素的溶液呈綠色。葉綠素的丙酮提取液在透射光下是翠綠色的,而在反射光下是綜紅色的。 葉綠素溶液的熒光可達吸收光的10%左右。而鮮葉的熒光程度較低,指占其吸收光的0.1%-1%左右。


熒光效應在植物生理學中有廣泛的應用。用這個效應可以研究植物的抗逆生理。因為在逆境下,植物的葉綠素會發(fā)生變換,研究其熒光,可以作為植物受逆境脅迫程度的指標。另外,還有一個磷光效應。就是當熒光出現(xiàn)后,立即中斷光源,用靈敏的光學儀器還可在短時間內(nèi)看到微弱紅光,這就是磷光。

葉綠素 - 生物合成與代謝

葉綠素a的生物合成途徑,是由琥珀酰輔酶A和甘氨酸縮合成δ-氨基乙酰丙酸,兩個δ-氨基乙酰丙酸縮合成吡咯衍生物膽色素原,然后再由4個膽色素原聚合成一個卟啉環(huán)──原卟啉Ⅳ,原卟啉Ⅳ是形成葉綠素和亞鐵血紅素的共同前體,與亞鐵結(jié)合就成亞鐵血紅素,與鎂結(jié)合就成鎂原卟啉。鎂原卟啉再接受一個甲基,經(jīng)環(huán)化后成為具有第Ⅴ環(huán)的原脫植醇基葉綠素,后者經(jīng)光還原、酯化等步驟而形成葉綠素a。



落葉

葉綠素在活體內(nèi)也和其他物質(zhì)一樣處于不斷更新狀態(tài)。它被葉綠素酶分解,或經(jīng)光氧化而漂白。深秋時許多樹種葉片呈美麗的紅色,就是因為這時葉綠素降解速度大于合成速度,含量下降,原來被葉綠素所掩蓋的類胡蘿卜素、花色素的顏色顯示出來的緣故。


在植物衰老和儲藏過程中,酶能引起葉綠素的分解破壞。這種酶促變化可分為直接作用和間接作用兩類。直接以葉綠素為底物的只有葉綠素酶,催化葉綠素中植醇酯鍵水解而產(chǎn)生脫植醇葉綠素。脫鎂葉綠素也是它的底物,產(chǎn)物是水溶性的脫鎂脫植葉綠素,它是橄欖綠色的。葉綠素酶的最適溫度為60-82℃,100℃時完全失活。起間接作用的有蛋白酶、酯酶、脂氧合酶、過氧化物酶、果膠酯酶等。蛋白酶和酯酶通過分解葉綠素蛋白質(zhì)復合體,使葉綠素失去保護而更易遭到破壞。脂氧合酶和過氧化物酶可催化相應的底物氧化,其間產(chǎn)生的物質(zhì)會引起葉綠素的氧化分解。果膠酯酶的作用是將果膠水解為果膠酸,從而提高了質(zhì)子濃度,使葉綠素脫鎂而被破壞。


在活體綠色植物中,葉綠素既可發(fā)揮光合作用,又不會發(fā)生光分解。但在加工儲藏過程中,葉綠素經(jīng)常會受到光和氧氣作用,被光解為一系列小分子物質(zhì)而褪色。光解產(chǎn)物是乳酸、檸檬酸、琥珀酸、馬來酸以及少量丙氨酸。因此,正確選擇包裝材料和方法以及適當使用抗氧化劑,以防止光氧化褪色。

葉綠素 - 提取


綠葉

葉綠素提取的準備工作是在一個半暗的房間里,室溫保持在25℃。提取步驟如下:

(1) 取1000克新鮮的綠葉,在韋氏攪切器中粉碎。

(2)將粉碎的1000克綠葉放進加有少量的碳酸鈣的丙酮中(溫度20℃)進行萃取,直到過濾、清洗后的葉子碎片為無色。

(3)將過濾后的丙酮提取液放到盛有1升石油醚和100ml丙酮的漏斗中,然后輕輕地旋轉(zhuǎn),同時加放蒸餾水直到分層為止。水層的大部分丙酮和水溶雜質(zhì)被丟棄,只剩石油醚溶液。

(4)將石油醚溶液用蒸餾水再次凈化后,用含有石油醚和0.01克草酸的200ml80%的甲醇溶液清洗5次以上,最后得到黃綠色懸浮液。

(5)用無水硫酸鈉對懸浮液進行干燥,并將其滲入到3cm厚的蔗糖粉末制成柱中,然后用石油醚清洗沉淀的色素去掉類胡蘿卜素,使之只含有天然的葉綠素。

(6)含有天然葉綠素的蔗糖柱分兩層,綠層有4-10mm的葉綠素b層,另一藍層為2-6mm的葉綠素a層。

(7)將位于藍層正中的部分(約占藍層的一半) 放入醚中,對此懸浮液進行過濾、洗提,用蒸餾水清洗,用硫酸鈉干燥,再用器皿進行過濾后,得到葉綠素a。

(8)將(6)中的綠層中間部分移出,迅速放入醚中過濾、洗提,制成葉綠素b醚溶液。

葉綠素 - 用途


葉綠素產(chǎn)品

造血功能

諾貝爾得獎人Dr.Richard Willstatter和Dr.Hans Fisher發(fā)現(xiàn):葉綠素的分子與人體的紅血球分子在結(jié)構(gòu)上很是相似,唯一的分別就是各自的核心為鎂原子與鐵原子。因此,飲用葉綠素對產(chǎn)婦與因意外失血者會有很大的幫助。

幫助解除體內(nèi)殺蟲劑與藥物殘渣

營養(yǎng)學家Bernard Jensen博士指出,葉綠素能除去殺蟲劑與藥物殘渣的毒素,并能與輻射性物質(zhì)結(jié)合而將之排出體外。此外,他也發(fā)現(xiàn)一般上健康的人會比病患者擁有較高的血球計數(shù),但通過吸收大量的葉綠素之后,病患者的血球計數(shù)就會增加,健康狀況也會有所改善。

養(yǎng)顏美膚

新英國醫(yī)藥期刊曾經(jīng)做過這樣的報導:葉綠素有助于克制內(nèi)部感染與皮膚問題。美國外科雜志報導:Temple大學在1200名病人身上,嘗試以葉綠素醫(yī)治各種病癥,效果極佳。

葉綠素 - 新聞動態(tài)

澳研究人員偶然提取到新型葉綠素

澳大利亞悉尼大學生命科學學院研究人員宣布,他們發(fā)現(xiàn)了一種新葉綠素,它在生物能源領域可望擁有廣闊的應用前景。


版權(quán)免責聲明 凡本網(wǎng)注明“來源:就是要儀器網(wǎng)”的所有作品,版權(quán)均屬于就是要儀器,轉(zhuǎn)載請注明“來源:就是要儀器網(wǎng)m.mrboha.com”。違反上述聲明者,本網(wǎng)將追究其相關法律責任。本網(wǎng)轉(zhuǎn)載自其它媒體的信息,轉(zhuǎn)載目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負責。
葉綠素熒光測定儀的原理相關產(chǎn)品 相關儀器
相關文章 相關文章
技術(shù)信息檢索
檢索范圍:
關  鍵  字:
按字母分類: A| B| C| D| E| F| G| H| I| J| K| L| M| N| O| P| Q| R| S| T| U| V| W| X| Y| Z| 熱門一| 熱門二| 熱門三| 熱門四| 熱門五|


中儀主頁聯(lián)系中儀了解中儀版權(quán)聲明友情鏈接站點地圖廣告服務
CopyRight 2003年創(chuàng)立  版權(quán)所有  MRO工業(yè)品就是要儀器網(wǎng)